We start from the axiom of completeness of R.
Axiom of completeness.
Suppose A C R is nonempty, bounded above. Then, there is @ € R satisfying
both (i),(ii)

(i) a>z Vxe A
(ii) if > x Va e A, then a < .

By trichotomy of R, such « is unique and denoted by sup A, called the supre-
mum of A.

Remark. For a nonempty bounded below set A C R, one can define infimum
of A similarly. It turns out, inf A = —sup(—A).

Monotone convergence theorem is a direct consequence of this axiom.
Monotone Convergence Theorem.
Every monotone increasing, bounded above sequence is convergent.

Proof. Let (x,) be such a sequence and A := {z, : n € N}. Let o := sup A.
We aim to show that (x,) converges to . Let € > 0. Since oo — e cannot be an
upper bound, there is N € N such that zxy > « — €. Since (z,) is increasing,
Tp > a — € for all n > N. Since « is an upper bound, o — € < z,, < « for all
n > N. Therefore, |2, —a| < € for all n > N. O

Remark. For a monotone decreasing, bounded below sequence (z,,), it con-
verges to — lim,,_, o, —Zy, where the limit of (—x,,) is guaranteed by the Mono-
tone convergence theorem.

Digression.
Existence of a monotone subsequence.
Every sequence admits a monotone subsequence.

Proof. Let (z,) be a sequence. We say that z,, is a peak if z; < =z, for all
k > n. Here we distinguish x,,,, z,, whenever n; # na.

We divide it into two cases. First case: (x,) has infinitely many peaks. Second
case: (x,,) has finitely many peaks.

Case 1:

Let ny := min{n € N: z,, is a peak } and ny := min{n > ng_; : z,, is a peak }
for k > 2. By assumption, {n > ni_1 : x, is a peak } # ) for each k > 2, hence
ny is well-defined by well-ordering principle of N. Since n; > ni_1 for each
k > 2, (zn,) is a subsequence of (x,). It is decreasing.

Case 2:

By assumption, there is N € N such that z, is not a peak whenever n > N.
Let ny := N and ng := min{n > ng_1 : T, > xn,_, } for £ > 2. Since x,, _,
is not a peak, {n > ng_1 : T > Tp,_,} # 0 and ny, is well-defined. (z,, ) is a
subsequence of (z,,), which is increasing. O



Remark. By Monotone convergence theorem and Existence of a monotone
subsequence, every bounded sequence admits a convergent subsequence, which
is Bolzano-Weierstrass Theorem.

Nested Interval Theorem.
Suppose (Ij) is a sequence of nondegenerate closed and bounded intervals, such
that Iy C Iy for all £ € N. Then,

(i) MRyl # 0
(ii) If [Ix| = 0 as k — oo, then NP2 I}, = {&} for some & € R.

Proof. Write I, = [ag,bx] with a < by for each &k € N. Since (a) is an
increasing sequence bounded by by, it converges, say to a. Next, we show that
a € NP2 1. Fix N € N. Since a = suppcyax, a > ay. On the other hand,
am < by < by for every m > N, therefore, a = limy_, o, ar < by. These show
a € Iy for any N € N. That is, a € Ng2, ;. This shows (i).

Let 2,y € N2 Ii. |z —y| < by — ap = |Ii| for every k € N. Letting k — oo,
|z —y| = 0. This shows (ii). O

Remark. Let a := limy_, oo ag, b := limy_yo0 bg. Then, N2 Iy, = [a, b].

[0,1] is uncountable.

Proof applying Nested interval theorem. Suppose not, let {ry,r2,...} be an enu-
meration of [0,1]. Divide [0,1] into three closed intervals, each has length § and
each pair intersects at most one point. Let I3 be an interval such that r1 ¢ I7.
Divide I into three closed intervals, each has length 3% and each pair intersects
at most one point. Let Iy be an interval such that ro ¢ I. Continuing the
process, one admits a sequence of closed intervals (Ix) such that Iy C I,
r, & I, and |I,| = 3 for each k. By Nested interval theorem (ii), N2, Ix = {¢}
for some & € [0,1]. Since & € I, for each k, £ # r, for all k and hence £ ¢ [0, 1].
Contradiction. There cannot be an enumeration of [0, 1]. O

Second proof. Suppose not, let {rq,rs,...} be an enumeration of [0, 1]. For each
k € N, let 0.ax1ax20k3... be a decimal representation of r;. A number in [0, 1]
admits two decimal representations only if it admits a terminal 0 decimal rep-

resentation. Let
by — 3 if ark Z 5
k= 7 ifap <5

b := 0.b1babs... € [0,1] admits a unique decimal representation, but for each
k € N, by # agk. Therefore, b # r and b ¢ [0,1]. Contradiction arises. There
cannot be an enumeration of [0,1]. O

Next, we show Bolzano-Weierstrass Theorem from Nested Interval Theorem.
Bolzano-Weierstrass Theorem.
Every bounded sequence admits a convergent subsequence.



Proof. Let (a,) be a bounded nonconstant sequence. Let a := inf,ena, and
b :=sup,,cy an. Divide [a,b] into two closed intervals with equal length and let
I; to be one of these two intervals such that a,, € I; for infinitely many n € N.
Divide I; into two closed intervals with equal length and let I to be one of
these two intervals such that a,, € I3 for infinitely many n € N. Continuing the
process, one admits a sequence of closed intervals (Ij) such that for each k € N,

(1) Ii+1 C Iy
(2) 1| = B2
(3) ay, € I for infinitely many n € N

By Nested interval theorem (ii), there is £ € R such that N3 | I, = {{}. By (3),
one can define n; := min{n € N:a, € I} and ny := min{n > ng_1 : a, € I1}
for k > 2. The subsequence (a,, ) converges to &. O

Proposition 1: If (a,,) converges to L, then every subsequence (a,, )
converges to L.

Proposition 2: (a,) converges to L iff every subsequence (a,,) ad-
mits a subsequence (ankj) converging to L.

Proof of the sufficiency of Proposition 2. Suppose (a,) does not converge to L.
By definition, there is € > 0 such that given any N € N, |a,, — L| > € for some
n > N. Hence, ny := min{n € N : |a, — L| > ¢} and ny := min{n > np_1 :
|an, —L| > €} are well-defined. The subsequence (ay,,, ) satisfying |a,, —L| > € for
each k, admits no subsequence converging to L. Proved by contrapositive. [

Bolzano-Weierstrass can show a generalized nested interval theorem, saying
If (Fy) is a sequence of nonempty closed and bounded sets such that Fyy1 C Fy
for every k € N, then

(i) NpL, Fy # 0

(i) If diam(Fy) :=sup{|z—y| : z,y € Fi,} — 0 as k — oo, then N, Fy, = {{}
for some € € R.

Here, we adopt the definition that F' is said to be closed if given any convergent
sequence in F', its limit is also in F'.

Proof. Pick ar € Fy. Since Fj is a bounded set, by Bolzano-Weierstrass
theorem, (ar) admits a subsequence (a,,) converging to L. We show that
Len,F. Fixany NeN, for k> N, ay, € F,, C F, C Fn. Since Fy is
closed, L € Fy. Hence, L € N2, F}, and (i) is shown. Proof of (ii) is similar to
the proof of nested interval theorem (ii). O



An important application of Bolzano-Weierstrass theorem is to show the
Cauchy criterion.

Cauchy Criteria.
(ay) is convergent iff (a,) is Cauchy.

Definition. (a,) is said to be Cauchy if for every € > 0, there is N € N such
that |a, — am| < € for every n,m > N.

Equivalently, for every € > 0, there is N € N such that |a,4, —ay,| < € for every
n > N and p € N.

That is, limy, e SUPpen|@ntp — an| = 0.

Proof of sufficiency of Cauchy criteria. Let (a,) be a Cauchy sequence. We
show the following

(i) (an) is bounded
(ii) (a,) admits a convergent subsequence

(iii) If a Cauchy sequence admits a convergent subsequence, then it converges
to its subsequential limit.

By definition of Cauchy, there is N € N such that |a, — am,| < 1 for every
n,m > N. Therefore, |a,| < max{|a1], |az], ..., Jan—1|, |an|+ 1} for every n € N
and this shows (i). (ii) follows from (i) and Bolzano-Weierstrass theorem. For

(i),
Suppose (a,, ) is a subsequence of (a, ), converging to L. Let € > 0.
(a) There is N € N such that |a, — an,| < § for every n,m > N.

(b) There is K € N such that |a,, — L| < § for every k > K.

Let p := max{N, K}. Since n, > p > N, from (a), we have |a,, — an,| < § for
every n > N.

Since p > K, from (b), we have |a,,, —L| < §. By triangle inequality, |a, —L| < €
for every n > N. This shows (iii) and the theorem follows. O



